Roll No.

328354(28)

B. E. (Third Semester) Examination, Nov.-Dec. 2021

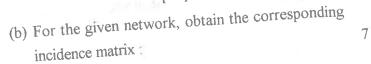
(New Scheme)

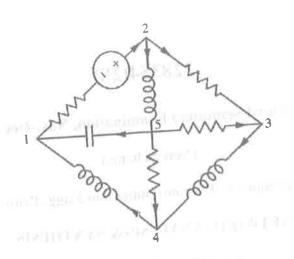
(Electronics & Telecommunication Engg. Branch)

NETWORK ANALYSIS & SYNTHESIS

Time Allowed: Three hours

Maximum Marks: 80

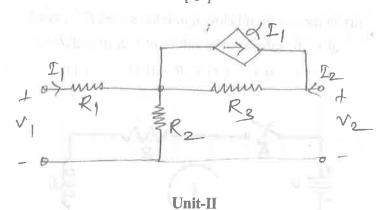

Minimum Pass Marks: 28


Note: Part (a) of every question is compulsory and carries 2 marks. Attempt any two from (b), (c) & (d) and carry 7 marks. Assume suitable data if needed.

Unit-I

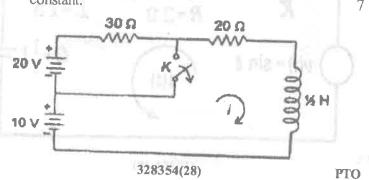
1. (a) Define tree and co-tree.

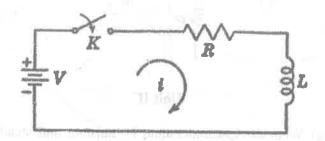
2



(c) The figure shown contains both a dependent current and dependent voltage source. For the element values given, determine the *Y* and *Z* parameters:

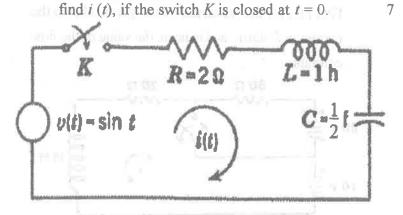
7

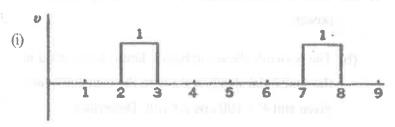

(d) Determine h parameters for the given network 328354(28)

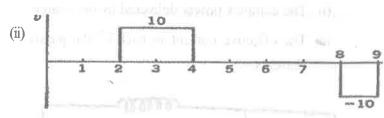

2. (a) What do you understand by tansient and steady state response?

(b) Derive the expression for unit step response of R-L circuit and sketch the waveform of current i (t). 7

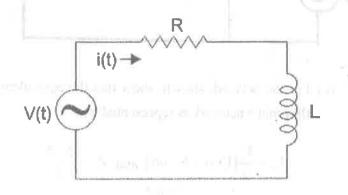
(c) The network of the figure reaches a steady state with the switch K open. At t = 0, switch K is closed. Find i (t) for the numerical values given, sketch the current waveform, and indicate the value of the time constant.


(d) In the circuit of below figure the switch K is closed at t = 0, solve for the values of i, di/dt and d^2i/dt^2 at t = 0+. If V = 100 V, $R = 10\Omega$, L = 1 H.

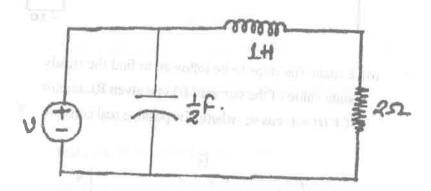

Unit-III


3. (a) What is initial and final value theorem?

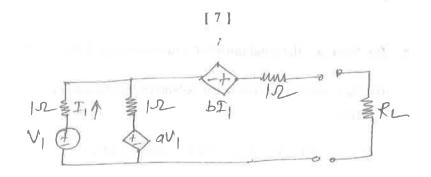
(b) In the series R-L-C circuit shown, the applied voltage is $v(t) = \sin t$ for t > 0. For the element values given,



(c) Write an equation for the non recurring waveform shown in below figures in term of unit step functions: 7


(d) Expalin the steps to be followed to find the steady state value of the current i(t) in a given RL circuit if $V(t) = V \cos wt$, where V is positive real constant. 7

[6]


Unit-IV

- **4.** (a) What is the condition for transfer of maximum power?
 - (b) The network shown in below figure is operated in the sinusoidal steady state with the element values given and $V = 100 \cos 2 t$ volt. Determine:
 - (i) The complex power delivered by the source.
 - (ii) The effective current in each of the passive elements.

(c) For the network shown, show that the equivalent thevenin's network is represented by:

$$V_{\theta} = \frac{V_1}{2} [1 + a + b - ab]$$
 and $Z_{\theta} = \frac{3 - b}{2}$

(d) For the given network shown in below figure show that:

$$Y_{12} = \frac{K(S+1)}{(S+2)(S+4)}$$

And determine the value and sign of K.

Unit-V

- 5. (a) What are the conditions for a function to be P.R.F.? . 2
 - (b) Test whether the following polynomial is Hurwitz or not?

$$P(S) = S^5 + 8S^4 + 24S^3 + 28S^2 + 23S + 6$$

(c) Synthesis the network in Foster form I and II.

$$Z(S) = \frac{(S^2 + 1)(S^2 + 9)}{S(S^2 + 4)}$$

(d) Synthesize the network in Cauer form I and II. 7

$$Z(S) = \frac{S^4 + 10S^2 + 9}{S^3 + 4S}$$